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(Fo � Fc) and (2Fo � Fc) Fourier syntheses are considered the most powerful

tools for recovering the remainder of a structure and for correcting crystal

structure models. A probabilistic approach has been applied to derive the

formula for the variance for the expected value of the coefficient (Fo� Fc). This

has allowed a better understanding of the features of the difference Fourier

synthesis; in particular, a subset of well phased reflections has been separated

from the subset of reflections best phased by the standard Fo Fourier synthesis.

An iterative procedure, based on the electron-density modification of the

difference Fourier map, has been devised which aims to improve phase and

modulus estimates of the reflections with higher variance value, by using as lever

arm the set of reflections with lower variance value. The new procedure

(DEDM) has been implemented and verified on a wide set of test structures, the

partial models of which were obtained by molecular replacement or by

automatic model-building routines applied to experimental electron-density

maps. Phase and modulus estimates of the difference Fourier syntheses improve

in all the test cases; as a consequence, the quality of the difference Fourier maps

also improves in the region where the target structure deviates from the partial

model. A new procedure is suggested, combining DEDM with standard

electron-density modification techniques, which leads to significant reduction of

the phase errors. The procedure may be considered a starting point for further

developments.

1. Notation

The following notation has been used in this article.

N: number of atoms in the unit cell of the true structure.

p: number of atoms in the structural model. Usually p � N,

but it may also be that p > N.

rj, fj, j = 1, . . . , N: ‘true’ atomic positions and corresponding

scattering factors (displacement parameters included).

r0j ¼ rj þ�rj, gj, j = 1, . . . , p: positional vectors of the atoms

belonging to the model structure and corresponding scattering

factors (displacement parameter included).

Bj, j = 1, . . . , N: isotropic displacement parameters of the N

atoms in the unit cell of the true structure.

B0j ¼ Bj þ�Bj, j = 1, . . . , p: isotropic displacement para-

meters of the atoms in the model structure.

s ¼ 2 sin �=�.

F ¼
PN

j¼1 fj expð2�ihrjÞ: ‘true’ structure factor for the reflec-

tion h.

Fo ¼ F þ j�j expði�Þ: observed structure factor; j�j is the

measurement error.

Fp ¼
Pp

j¼1 gj expð2�ihr0jÞ: structure factor of the model

structure.

E ¼ Aþ iB ¼ R expði’Þ, Ep ¼ Ap þ iBp ¼ Rp expði’pÞ: nor-

malized structure factors of F and Fp, respectively.

": statistical Wilson coefficient (corrects for expected inten-

sities in reciprocal-lattice zones).

Fq ¼
PN

j¼pþ1 fj expð2�ihrjÞ: structure factor of the substruc-

ture constituted by the atoms that are part of the N-atom

structure but not of the p-atom structure.

�N ¼ "
PN

j¼1 f 2
j .

�p ¼ "
Pp

j¼1 g2
j .

D ¼ hexpð�s2�B=4Þ cosð2�h�rÞi: the average involves the p

atoms and is performed per resolution shell.

�A ¼ D
Pp

j¼1 fjgj=ð�N�pÞ
1=2.

e ¼ 1þ h�i=�N .

Ii (x): modified Bessel function of order i.

m ¼ hcosð’� ’pÞi ¼ I1ðXÞ=I0ðXÞ: X is defined in the text.

2. Introduction

Many Fourier syntheses can be used to recover the remainder

of a structure when a partial structure is known (Ramachan-

dran & Raman, 1959; Srinivasan, 1961; Ramachandran &

Srinivasan, 1970). Today the use is mostly restricted to the

observed, to the difference and to the so-called ð2Fo � FcÞ

Fourier syntheses.

The observed synthesis is the conventional one: noncentric

reflections are usually weighted according to Sim (1959)



[mjFj expði’cÞ are the coefficients, where m is the Sim weight],

centric reflections according to Woolfson (1956). The maps

show missing atoms at about half the intensity, even less when

more of the structure is missing (Luzzati, 1952).

In order to obtain peaks with equal intensity, irrespective of

whether they belong to the known or to the remainder of the

substructure, the ð2Fo � FcÞ synthesis is used [it may be

considered the sum of an Fo and an ðFo � FcÞ synthesis]. Main

(1979) proposed the use of ð2mjFj � jFcjÞ coefficients. Read

(1986) observed that electron-density maps calculated from a

p-atom substructure are biased towards the substructure. He

used Main’s algebraic approach to introduce errors into the

cosine law and proposed to eliminate the model bias compo-

nent by using (2mjFj �DjFcj) coefficients for noncentric

reflections. The factor D compensates for errors in the atomic

positions, scattering and B factors. More recently a paper by

Caliandro et al. (2005) has generalized the expression of the

factor D to take into account measurement errors also.

Cochran (1951) studied the properties of the (Fo � Fc)

Fourier synthesis. Its efficiency has been discussed by

Henderson & Moffat (1971) and by Ursby & Bourgeois

(1997). These last authors studied, via Bayesian statistics, the

influence of measurement errors on the efficiency of the

synthesis.

In the present paper, we present some unknown features

and properties of the difference Fourier synthesis derived via a

probabilistic approach (see xx3 and 4). The study has also

suggested iterative procedures to improve both the quality of

the difference Fourier synthesis (see x5) and the quality of the

best observed electron-density map (see x6). The procedures

have been implemented in the program IL MILIONE (Burla

et al., 2007). The first applications are quoted in xx6 and 7.

3. About the coefficients of the difference Fourier
synthesis

Let �, �p and �q be the true electron density, a model density

and the difference structure, respectively; F, Fp and Fq are

their Fourier transforms. �q ¼ �� �p is the ideal difference

Fourier synthesis. It is defined by the following property:

summed to �p it exactly provides � irrespective of the quality

of the model structure. Its Fourier transform

Fq ¼ F � Fp ¼ jFj expði’Þ � jFpj expði’pÞ ¼ jFqj expði’qÞ

ð1Þ

provides the ideal difference structure factors which, added to

Fp, enable the complete electron density � to be recovered

from �p. If �p is part of � then �q is positive everywhere; if �p

contains false or misplaced atoms then �q is not a positive

defined function.

Since the values of ’ are unknown, the ideal difference

structure factors [equation (1)] remain unknown; common

practice is to calculate the difference Fourier synthesis by

using the difference structure factors, estimated via the

expression

hFqi ¼ hFi � hFpi: ð2Þ

The averages in equation (2) may be calculated by using the

conditional distributions of the joint probability function (see

Luzzati, 1952; Read, 1986; Caliandro et al., 2005),

PðR;Rp; ’; ’pÞ ¼ RRp �
�2ðe� �2

AÞ
�1 exp

�
�ðe� �2

AÞ
�1

� ½R2 þ eR2
p � 2�ARRp cosð’� ’pÞ�

�
;

ð3Þ

from which the following conditional phase probability

distribution may be derived:

Pð’jR;Rp; ’pÞ ¼ ½2�I0ðXÞ�
�1 exp½X cosð’� ’pÞ�; ð4Þ

where X ¼ 2�ARRp=ðe � �
2
AÞ. The value of �A may be

obtained via the relation hR2R2
pi ¼ ðeþ �

2
AÞ.

According to equation (3),

hjFj expði’Þi ¼ mjFj expði’pÞ: ð5Þ

The values provided by equation (5) are the coefficients of the

best observed Fourier synthesis as defined by Blow & Crick

(1959): it is ‘that Fourier transform which is expected to have

the minimum mean-square difference from the Fourier

transform of the true F’s when averaged over the whole unit

cell’ and it is ‘obtained by using the centroid of the probability

distribution for F.’

The concept of best synthesis may be extended to the

difference Fourier synthesis provided we are able to estimate

the mean value of jFpj expði’pÞ. The result is (Read, 1986)

hjFpj expði’pÞi ¼ DjFpj expði’pÞ; ð6Þ

where D may be estimated as �A=b1=2, b being the intercept of

the line that fits the distribution of �A versus s. Accordingly,

the coefficients of the best difference Fourier synthesis may be

assumed to be the difference between two expected values:

hFqi ¼ ðmjFj �DjFpjÞ expði’pÞ

¼ jmjFj �DjFpjj exp½ið’p þ s�Þ�; ð7Þ

where s = 1 or 0 according to whether the sign of mjFj �DjFpj

is positive or negative. The main problem arising from equa-

tion (7) is the following: while for the estimation of the

observed Fourier synthesis we use the estimated phases and

the observed moduli jFj, for the calculation of �q both moduli

(that is jmjFj �DjFpjj) and phases are estimates.

A relevant point is to establish how reliable such estimates

are. To answer the question it may be useful to calculate the

variance (say �q) of Fq. The usefulness of considering the

variances has already been presented by Ursby & Bourgeois

(1997), who introduced suitable weights to associate with the

difference Fourier coefficients, in order to take into account

measurement errors. To estimate �q we first calculate

hjFqj
2
i ¼ hjFj2 þ jFpj

2
� 2jFFpj cosð’� ’pÞi

¼ jjFj2 þD2hjFpj
2
i � 2mDjFjjFpjj þ hj�j

2
i ð8Þ

and then we derive

hjFqji
2
¼ m2
jFj2 þD2

jFpj
2
� 2mDjFFpj; ð9Þ
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from which the variance

�2
q ¼ hjFqj

2
i � hjFqji

2
¼ ð1�m2ÞjFj2 þ hj�j2i ð10Þ

is obtained. The role of �q may be elucidated by three extreme

examples.

Case 1: Both m and D are large, and both |F | and |Fp| are

large and have comparable moduli (see Fig. 1a). In this

situation the relation ’ ’ ’p is highly reliable, but it is

impossible to decide if F lies (in the Gauss plane) on the right

or on the left side of Fp. In Fig. 1(a) the two possibilities are

shown simultaneously; the expected value of ’q approximately

changes by � when passing from one choice to the other. The

high phase uncertainty is indicated in equation (10) by a large

variance value.

Case 2: |F | is quite large, |Fp| is small, and m and D are close

to 0.5 (see Fig. 1b). In this situation, the phase value to

associate with jmjFj �DjFpjj is ’p, but this assignment is

rather unreliable; indeed, owing to the small |Fp| value, the

relation ’p ’ ’ is not reliable. Again the large �q value

recognizes that the estimate is highly uncertain.

Case 3: |F | is small while |Fp| is quite large (see Fig. 1c). In

this situation the phase value to associate with jmjFj �DjFpjj

is ’p þ �. The small value of the variance suggests that the

phase indication is highly reliable; indeed, whatever the value

of ’, the value of ’q must be close to ’p þ � to satisfy the

constraint jFj ¼ jFpj þ jFqj ’ 0. The reliability of the phase

indication does not depend on the quality of the model

density.

The above three examples suggest that �q, according to

circumstances, may assume quite different values. That opens

new perspectives for an improved estimation of �q.

4. An experimental check of the variance

A step frequently encountered in protein crystallography is

the refinement of a model structure. In a high percentage of

cases (about 70%) the model is obtained by molecular

replacement techniques; in the remaining cases it is attained

by applying single/multiple-wavelength anomalous diffraction

(SAD–MAD), single/multiple isomorphous replacement

(SIR–MIR) or ab initio methods. Electron-density modifica-

tion techniques are applied to the best electron-density maps

obtained by one of the above methods, then automatic model

building routines are often applied.

In the case of molecular replacement the well known

problem of the model bias has to be overcome: i.e. the model

structure (almost) correctly placed in the unit cell has to be

modified until the target structure is reached. To check the

correctness of the theoretical results obtained in x3 we used, as

targets, the test structures quoted in Table 1. For each struc-

ture we report its Protein Data Bank (PDB) code, space group

(Space), data resolution (Res) and number of residues

(NresT). The model structures were located by REMO

(Caliandro et al., 2006), a molecular replacement program

included in the package IL MILIONE. Their PDB codes

(Model), the corresponding number of residues (NresM) and

the average phase error (i.e. hj’� ’pji) at the end of the

molecular replacement procedure (MPE) are also listed in

Table 1.

For three test cases, i.e. 2sar, 6ebx and 1lys, the target

proteins are constituted by two monomers related by

noncrystallographic symmetry, while the corresponding

models contain only one monomer (in fact in Table 1 the

number of residues of the model is half that of the target

structure). The molecular replacement run has been

performed by searching for only one copy of the model, and

the first REMO solution, representing one monomer correctly

Acta Cryst. (2008). A64, 519–528 Rocco Caliandro et al. � Fourier synthesis: a probabilistic study 521

research papers

Figure 1
Schematic view of three situations that can occur in the difference Fourier
synthesis: (a) both m and D are large, and both |F | and |Fp| are large and
have comparable moduli; (b) |F | is quite large, |Fp| is small, and m and D
are close to 0.5; (c) |F | is small while |Fp| is quite large.

Table 1
Test structures used in the analysis.

PDB is the PDB code of the protein structure (apart from the structure
enhexa, which is not yet deposited in the PDB), Space is its space group, Res is
the data resolution in Å and NresT is the number of residues; Model indicates
either the PDB code of the model structure used in the molecular replacement
procedure or that the structure was built by ARP/wARP starting from a map
obtained by ab initio phasing, NresM is the number of residues of the model
structure, and MPE is the mean phase error (in degrees) of the phases ’p,
calculated from the model structure, with respect to the published phases ’.

PDB Space Res NresT Model NresM MPE

enhexa† P43212 1.2 130 1paz 130 22
1kf3 P21 1.0 124 7rsa 124 26
6rhn P43212 2.2 115 4rhn 104 32
1zs0 P212121 1.6 163 1i76 163 42
3ebx P212121 1.4 62 by ARP/wARP 40 (+10 Gly) 45
1na7 P21 2.4 329 1m2r 327 48
1a6m P21 1.0 151 1mbc 153 48
1e3u P21 1.7 970 by ARP/wARP 520 (+492 Gly) 51
2sar P212121 1.8 192 1ucl, chain A 96 53
1pm2 P212121 1.8 678 by ARP/wARP 363 (+322 Gly) 56
1i9a P41212 2.4 364 by ARP/wARP 165 (+78 Gly) 58
1kqw I4 1.8 134 1opa 133 60
1lys P21 1.7 258 2ihl 129 64
6ebx P212121 1.7 124 3ebx 62 72
2iff P21 2.6 556 2hem 129 72
1cgn P6522 2.2 127 2ccy 122 73
1bxo C2 1.0 323 1er8 338 74

† Honnappa (2008).



placed, has been retained as model structure. In the following

these cases will be considered as preferential tests for Fourier

difference applications; for these cases the region where the

target structure is nearly reproduced by the model is well

separated from the region where only the target structure is

present.

In Table 1, four additional test cases were included; their

electron-density maps were obtained ab initio by IL

MILIONE and the starting models were built by ARP/wARP

(Perrakis et al., 1999). In these cases the models consist of

docked residues and of nondocked residues considered as

glycines. Their numbers are reported in the column NresM.

In equation (4) jRj and jRpj play a symmetrical role in

establishing the reliability of the relation ’ ’ ’p; indeed the

reliability parameter depends, via suitable parameters, on the

product RRp. Conversely, the results obtained in x3 suggest

that jFj and jFpj play different roles in establishing the relia-

bility of the phase ’q. Indeed, owing to the corresponding

different variances, the case in which jFj is large and jFpj is

small is quite different from the case in which jFj is small and

jFpj is large, even if the value of jjmjFj �DjFpjj is the same.

To check this property, we have divided the reflections into

batches, each batch corresponding to a given value of

(mjFj �DjFpj) and containing an equal number of reflections.

For each batch we calculated CrRESq and MPEq. The first is

the classical crystallographic residual between jFqj [the

modulus of the ideal difference structure factor, as given by

equation (1)] and its estimate hjFqji = jmjFj �DjFpjj (i.e. the

modulus of the best difference Fourier synthesis). The second

is the average difference between ’q [the phase of the ideal

difference structure factor, as given by equation (1)] and its

expected value (’p þ s�). CrRESq and MPEq estimate,

respectively, the modulus and the phase error resulting from

the replacement of the ideal difference Fourier coefficient Fq

by the best difference Fourier coefficient hFqi. The values of

MPEq versus mjFj �DjFpj for the three test structures are

superimposed in Fig. 2. We observe that

(i) MPEq shows a maximum when jmjFj �DjFpjj is close to

zero, as expected. We have verified (but not shown for brevity)

that this is also true for CrRESq.

(ii) According to equation (10), of the two batches having

the same value of jmjFj �DjFpjj, that with a negative value of

mjFj �DjFpj is expected to have smaller values of MPEq.

Fig. 2 shows that this trend is fully satisfied. We verified that

the distribution of CrRESq is instead symmetric with respect

to mjFj �DjFpj.

The above experimental results agree with equation (10)

and indicate that the ratio hjFqji=�q may be used as a criterion

to select the reflections for which ’q and jFqj are more accu-

rately estimated. To this end we calculated the standard

deviation �q according to equation (10), and we introduced a

weight w proportional to 1=�q. In Fig. 3 we plot MPEq versus

whjFqji for the test structure 2sar; for reference, the plot of

MPEq versus hjFqji is superimposed. In accordance with the

theoretical expectations, whjFqji ranks the phase error (and

also CrRESq) much better than hjFqji.

The above results seem to suggest that the weighted

difference Fourier synthesis with coefficients wðmjFj �DjFpjÞ

may be more useful than the simple mjFj �DjFpj Fourier

synthesis. To check the correctness of the expectation we

calculated for all the test structures the two corresponding

electron densities (h�qwi and h�qi, respectively) and we eval-

uated their correlation with the ideal difference structure �q

calculated via the coefficients F � Fp. The results were

disappointing: in spite of the larger correlation values, the

weighted Fourier difference maps contain a negligible amount

of new information with respect to the model electron density.

We identified two main reasons: (a) quite often h�wqi is anti-

correlated with �p, owing to the enhanced weight given to the

reflections with negative value of hFqi; (b) the total correlation

with the true electron density � does not improve, since the
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Figure 2
MPEq versus mjFj �DjFpj for the three test structures used. The bins are
chosen so as to contain an equal number of reflections.

Figure 3
MPEq versus hjFqji (circles) and whjFqji (triangles) for the test structure
2sar. The bins are chosen so as to contain an equal number of reflections.



reflections with largest weight have vanishing |F | values and

therefore do not contribute to �. This last observation suggests

that better electron-density maps may be obtained if a

procedure is devised that is able to improve the phases of the

reflections with large |F | modulus (see x5).

5. The difference electron-density modification
procedure

The theoretical results described in x3 and tested in x4 indicate

that

(1) there are reflections for which the ’ values may be

accurately estimated via equation (4) [i.e. when F and Fp are

sufficiently large] while the corresponding ’q values cannot be

reliably estimated;

(2) there are reflections for which the ’ values cannot be

accurately estimated via equation (4) [i.e. when F and/or Fp

are small] while their ’q values are reliably estimated [i.e.

when hFqi is sufficiently large and negative].

The reflections of point (1) play a central role in the

electron-density modification (EDM) procedures that aim to

recover a more accurate observed electron density starting

from a map obtained via ab initio, SAD–MAD, SIR–MIR or

molecular replacement methods. Any EDM algorithm modi-

fies an Fo or a 2Fo � Fc electron-density map to fit the posi-

tivity of the map, also via histograms in one or more

dimensions, in direct and/or reciprocal space, and tries to

capture the stereochemical information and improve the

phase estimates.

It may be argued that the reflections of point (2) may play a

crucial role in a difference electron-density modification

(DEDM) procedure, designed to improve difference electron-

density maps. DEDM and EDM should work in substantially

independent ways. Indeed,

(a) while the reflections playing a crucial role in EDM are

those defined in point (1), those more useful for DEDM are

the reflections defined in point (2);

(b) the restraints on the difference Fourier map are not

based on the positivity of the electron density (indeed h�qi

shows both positive and negative regions).

In this section we plan to improve, via a DEDM procedure,

the pairs (h’qi, hjFqji) by exploiting the good phase informa-

tion available for the reflections with a large negative value of

ðmjFj �DjFpjÞ. To this purpose, we divide the set of reflec-

tions into three subsets:

Subset A: reflections with mjFj �DjFpj ’ 0.

Subset B: reflections with mjFj �DjFpj � 0.

Subset C: reflections with mjFj �DjFpj � 0.

The three subsets are sketched in Fig. 4, where the initial

values of MPEq are plotted versus mjFj �DjFpj for the

structure 2sar. Their limits are initially set so that subset

B includes 70% of the reflections with mjFj �DjFpj> 0

and subset C includes 70% of the reflections with

mjFj �DjFpj< 0 (the limits are slightly varied during the

DEDM cycles to avoid border effects).

Each subset will play a different role in the DEDM

procedure. The phases and the moduli of the reflections in

subset C are well determined. They are considered as prior

information in the DEDM procedure. The starting phases of

the reflections belonging to subset B are strongly correlated

with the model phases: thus, bringing them closer to ’q will

improve the difference Fourier map. The phases of the

reflections in subset A are weakly correlated with the model

phases and may influence the quality of the difference map if

the DEDM procedure is able to improve their values,

provided the vanishing hjFqji moduli are replaced by more

correct and larger values.

The DEDM procedure we propose may be described in

terms of four main steps:

Step 1: Initialization. The observed amplitudes are

converted to an absolute scale and normalized (Giacovazzo et

al., 2002), the structure factors Fp are calculated from the

model structure and the starting difference Fourier synthesis is

calculated according to equation (7). In accordance with the

previous observations, the weight associated with �q does not

multiply the coefficients of the difference Fourier synthesis; it

is only used throughout the DEDM procedure to select

reflections (see Step 2).

Step 2: Phase assignment. Several DEDM cycles

�q ! h’qi ! �q are performed, in which hjFqji remain equal

to their initial values, while some of the h’qi values are

allowed to vary; the cycles aim to move the phase values away

from their initial values ð’p þ s�Þ by, hopefully, guessing the

correct sense of variation. In each half cycle �q ! h’qi the

electron-density map is modified as follows: 80% of the

positive map (i.e. the smallest intensity pixels) and 90% of the

negative map (i.e. the pixels with intensity close to zero) are

set to zero; the rest is squared. The new h’qi values are

immediately associated with the reflections of subset A (they

have the worst initial phases). For low-weight reflections

belonging to subset B the h’qi values obtained at the end of
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Figure 4
MPEq versus mjFj �DjFpj for the test structure 2sar, before and after the
application of DEDM. Two vertical lines define the subsets A, B and C
described in the text.



the cycle (n + 1) are combined with the phases obtained at the

cycle n; the phases of the high-weight reflections belonging to

subsets B and C are not changed (they are expected to have

good initial phases). At the end of this step, the boundary

condition (see Appendix A) is applied to the reflections for

which mjFj<DjFpj and the following final phase values are

assigned:

h’qi ¼ ð’p þ �Þ þ sign� rand� jh’qi � ð’p þ �ÞjMAX: ð11Þ

sign is the direction of variation determined during the

preceding cycles, rand is a random number generated between

0 and 1, and jh’qi � ð’p þ �ÞjMAX is the largest deviation

compatible with the boundary condition [see equation (17)].

The rationale is to force the phase values of the considered

reflections to move away from their initial values, trusting in

the direction defined by the DEDM cycles. The symmetry-

restricted phases are excluded from the above procedure.

Step 3: Modulus assignment. As soon as new phase values

are assigned to hFqi, new moduli are calculated according to

Appendix A. The new moduli are combined with the previous

ones with a coefficient of 0.8 for the old values.

Step 4: Phase and modulus assignment. Further cycles of

DEDM are carried out, where the moduli are fixed to their

new values and all the phases are allowed to vary with respect

to the phase-assignment step. At the end the modulus values

are updated to restore the geometrical correspondence

between phases and moduli. As in the phase-assignment step,

the difference Fourier map is modified by selecting the very

positive and negative parts, and the new phase values are

combined with the previous ones. If mjFj<DjFpj, the phase

values that do not satisfy condition (14) are corrected after

each cycle as described in Appendix A.

6. Applications of the DEDM procedure

The DEDM procedure has been applied to the test cases

quoted in Table 1; the outcome is summarized in Table 2,

where, for each of the parameters CrRESq and MPEq, two

values are reported, calculated before and after the DEDM

application, respectively. The last column of Table 2 contains

two values of the correlation factor (CORRq), calculated

between the ideal difference Fourier map and the difference

maps available before and after the application of DEDM,

respectively.

As a general trend, we notice that, after the application of

DEDM, both the parameters CrRESq and MPEq diminish

and, correspondingly, the CORRq values increase. In parti-

cular we note the following:

(i) The CrRESq values, both before and after DEDM, are

anti-correlated with MPE and their improvement is marginal

(i.e. it seems easier to improve phases than moduli).

(ii) Before DEDM, MPEq is weakly correlated with MPE;

their correlation increases after DEDM (owing to the fact that

phase improvement is larger for better starting models).

(iii) In various cases CORRq significantly improves after

DEDM. As expected, the most resistant cases are those for

which the model structure is quite poor (see the last lines in

Table 2).

To check which phases benefit more by DEDM, for the

structure 2sar we plot in Fig. 4, versus mjFj �DjFpj, the final

MPEq values, before and after DEDM. As a result of DEDM,

the h’qi values of the reflections lying in regions A and B have

been significantly improved (i.e. by levering on the phased

reflections of the set C), thus reducing the asymmetry of the

distribution. Similar plots, not shown for brevity, have been

obtained for the other test structures.

The crucial point is now whether the difference Fourier

maps obtained at the end of DEDM actually contain features

of the protein structure that were not present in the conven-

tional difference Fourier maps. For this purpose we selected

some test structures (see Table 3) for which such analysis leads

to non-ambiguous results; we used the CCP4 package

(Collaborative Computational Project, Number 4, 1994) to

calculate the correlation coefficient, residue by residue,

between the various difference Fourier maps h�qi and the map

built from the published coordinates �. The selected test

structures were the following:

(a) 2sar, 1lys and 6ebx. They contain two symmetry-

independent monomers, one of which is superimposed on the

molecular replacement solution (denoted monomer A) while

the second is to be located (monomer B). In Table 3 the

average values of the correlation coefficients calculated for the

main-chain atoms of the two monomers are reported; the

columns Initial, DEDM and Ideal refer to the difference

Fourier maps obtained, respectively, before and after the

application of DEDM, and to the ideal difference Fourier map

�q. In all cases, the correlation value for monomer B increases

when DEDM is applied. Although far from the Ideal value,

the larger DEDM values imply that new features are present

in the final h�qi in a region far away from the model structure
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Table 2
Results of the DEDM procedure.

CrRESq is the crystallographic residue of the estimated moduli hjFqji with
respect to the ideal ones jFqj; MPEq is the mean phase error (in degrees) of the
estimated phases h’qi with respect to the ideal ones ’q; CORRq is the
correlation factor between the difference Fourier map and the ideal one. For
each parameter the values before and after the application of the DEDM
procedure are reported.

PDB CrRESq MPEq CORRq

enhexa 0.8! 0.8 52! 45 0.67! 0.74
1kf3 0.7! 0.7 45! 40 0.72! 0.76
6rhn 0.9! 0.9 52! 46 0.73! 0.77
1zs0 1.2! 1.1 55! 44 0.59! 0.69
3ebx 1.5! 1.3 64! 50 0.50! 0.64
1na7 1.7! 1.6 56! 54 0.60! 0.62
1a6m 1.7! 1.7 58! 45 0.42! 0.56
1e3u 1.6! 1.4 55! 41 0.57! 0.69
2sar 1.7! 1.6 54! 49 0.54! 0.58
1pm2 1.8! 1.6 57! 47 0.49! 0.60
1i9a 1.9! 1.8 59! 52 0.56! 0.64
1kqw 2.1! 2.1 56! 51 0.52! 0.56
1lys 2.1! 2.0 66! 63 0.40! 0.43
6ebx 3.6! 3.4 64! 60 0.29! 0.34
2iff 4.7! 4.5 75! 75 0.21! 0.23
1cgn 3.2! 3.0 59! 54 0.37! 0.45
1bxo 4.3! 4.1 47! 43 0.37! 0.42



which were not present in the initial h�qi. As counterpart, the

correlation values for monomer A are decreased when DEDM

is applied; for 2sar and 1lys the corresponding Ideal values are

approached. This means that DEDM is able to reduce the

strong bias constituted by the model used in the molecular

replacement step. For 6ebx, which has the worst initial model

of the three (see its MPE in Table 1), the method is not able to

recover the differences between model and target structures in

the region of monomer A.

The residue-by-residue correlation calculated for the side

chain (not reported) is less influenced by DEDM, although the

corresponding DEDM values, for the three test cases, are still

increased with respect to the Initial values.

Fig. 5 is a visual counterpart of the above conclusions,

obtained using the program COOT (Emsley & Cowtan, 2004);

for the structural fragment of 2sar comprising residues 31–33

of monomer B we report the Initial and the DEDM h�qimaps,

respectively, in blue and red. It can be noted that the DEDM

map describes the atomic positions of residue 32 (Gln) and its

peptide bond with residue 33 (Asp) much better than the

initial map.

(b) 1a6m and 1kf3. The first structure includes a proto-

porphyrin IX containing iron (C34H32FeN4O4), an oxygen

molecule and two sulfate ions (SO4) in the asymmetric unit.

These ligands were not present in the model used for mol-

ecular replacement; therefore a study of the correlation

coefficients between h�qi and � calculated for such atoms will

indicate the quality of the maps. The increase of the average

value of the correlation coefficient, reported in Table 3 (from

0.79 to 0.88), indicates that the DEDM difference Fourier map

contains much more detail with respect to the Initial differ-

ence Fourier map and approaches the Ideal one. Similar

results, calculated for a sulfate ion present as ligand, are

obtained for 1kf3 (from 0.52 to 0.65).

(c) enhexa. The target protein shows a six-residue loop

which does not fit the model positioned via molecular

replacement. The average values of the residue-by-residue

correlation coefficients calculated along this loop, reported in

Table 3, indicate an improvement in the DEDM difference

Fourier map with respect to the initial one.

(d) 3ebx. The initial model was built by ARP/wARP: it

contains holes (for a total of 12 residues) and non-docked

residues (ten residues, interpreted as glycines). To assess the

improvements in the difference Fourier map, we calculated the

main-chain residue-by-residue correlation coefficient in the

regions not covered by the model and the side-chain residue-

by-residue correlation coefficient in the regions of non-docked

residues. Their average values are reported in Table 3,

denoted, respectively, by ‘holes’ and ‘Gly’; in the first case the

average correlation increases from 0.72 to 0.81, and in the

second case from 0.70 to 0.76. In Fig. 6 the improvements in

the difference Fourier map may be appreciated. From right to

left, the first four residues of the sequence (Arg, Ile, Cys and

Phe) are shown. This terminal region was not covered by the

model and cannot be identified by the initial difference

Fourier map (in blue). The difference Fourier map after

DEDM (in red), instead, is much more continuous and fits well

the side chains of the four residues.

7. The EDM–DEDM procedure

The above results suggest a straightforward strategy for the

use of the DEDM approach: just replacing the standard

difference Fourier synthesis in automatic model building or

refinement procedures. An alternative strategy, based on the
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Table 3
Average correlation coefficients, calculated residue-by-residue, between
the electron-density map calculated from the published coordinates and
various types of difference Fourier maps.

The letters A and B in the first column refer to monomer A (the one on which
the model structure superimposes after the molecular replacement step) and
monomer B, respectively. For the structure 3ebx, holes refers to residues not
matched with any residue of the model and Gly refers to residues matched
with non-docked residues of the model. The headings Initial, DEDM and Ideal
refer to the difference Fourier map before and after the application of DEDM,
and to the ideal difference Fourier map, respectively.

PDB Initial DEDM Ideal

2sar A �0.10 �0.18 �0.16
2sar B 0.56 0.58 0.89
1lys A 0.44 0.43 0.37
1lys B 0.48 0.49 0.87
6ebx A 0.29 0.24 0.42
6ebx B 0.36 0.37 0.86
1a6m 0.79 0.88 0.96
1kf3 0.52 0.65 0.89
enhexa 0.66 0.70 0.90
3ebx (holes) 0.72 0.81 0.89
3ebx (Gly) 0.70 0.76 0.90

Figure 5
2sar: difference electron-density maps calculated before (blue) and after
(red) the application of the DEDM procedure, superimposed on the
structural fragment corresponding to residues 31–33 (Ser, Gln and Asp)
of monomer B.



expected complementarity between EDM and DEDM, may

be applied. Let us suppose the following:

(i) The standard EDM procedure ends with the electron-

density map �p (the best map available via such procedure):

jFpj expði’pÞ is the generic corresponding structure factor.

(ii) The application of DEDM to �p leads to h�qi, and to the

corresponding structure factors hFqi ¼ hjFqj expði’qÞi, with

weight w.

(iii) The overall structure factors

jF 0j expði’0Þ ¼ DjFpj expði’pÞ þ whFqi ð12Þ

are calculated for all the observed reflections.

Since the phases h’qi, obtained at the end of step (ii), are

usually better than those calculated by the standard difference

electron density, it may be supposed that the new phases ’0

will be more accurate than those available at the end of step (i)

(i.e. the ’p values). This expectation led to the suggestion to

iterate the EDM–DEDM cycles, according to the following

scheme:

’p �!
DEDM

’0 �!
EDM

’p �!
DEDM

’0:

During the EDM cycles the phases of reflections having high

values of mjFj and DjFpj are allowed to vary (they are badly

estimated by the DEDM procedure, since they have jFqj ’ 0),

while the phases of reflections having high values of DjFpj and

low values of mjFj are kept fixed (they are well estimated by

the DEDM procedure, since they have jFqj � 0). The mean

phase errors hj’0 � ’ji obtained after the first and the second

application of the DEDM cycles, together with the correlation

factors of the corresponding Fourier maps, are quoted in

Table 4. For most of the test structures the procedure signifi-

cantly improves the quality of the phase set; the most resistant

are the structures for which a quite poor model was available.

In some cases, such as 1zso, 1a6m, 1e3u and 1pm2, the

improvement is relevant (42! 36�, 48! 38�, 51! 40� and

56! 49�, respectively). We verified that such improvements

cannot be obtained by using EDM and DEDM separately, and

that a further iteration of the procedure leads to better results

only for a few test structures.

The 1e3u electron-density maps, the first corresponding to

the initial ARP/wARP model and the second to the final map

available at the end of the EDM–DEDM cycles (observed

moduli and phases ’0), are superimposed on the published

model in Fig. 7, respectively, in blue and red. Moving from

right to left, it can be noted that the residues 205 (Lys) and 206

(Thr) of chain A may be identified only by the EDM–DEDM

electron-density map. The improved quality of this map has

also been automatically recognized by ARP/wARP; its

outcome was processed by the SSM function (Krissinel &

Henrick, 2004) within COOT to compare the ARP/wARP

model with the published one. The corresponding routines

align the two structures by matching graphs built on the

protein’s secondary-structure elements, followed by an inter-

active three-dimensional alignment of protein backbone C

atoms. The results may be summarized as follows: in the initial

model 353 residues were aligned, with an r.m.s. deviation of

0.38 Å; 430 residues were aligned in the model obtained from

the EDM–DEDM map, with an r.m.s. deviation of 0.32 Å.

A similar result is obtained for 1pm2: 207 residues were

aligned in the initial model, with an r.m.s. deviation of 0.46 Å,

and 299 residues in the model obtained from the EDM–

DEDM map, with an r.m.s. deviation of 0.25 Å.

8. Conclusions

The statistical approach applied to the (Fo � Fc) Fourier

synthesis has revealed new interesting features, related to the
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Figure 6
3ebx: difference electron-density maps calculated before (blue) and after
(red) the application of the DEDM procedure, superimposed on the
structural fragment corresponding to residues 1–4 (Arg, Ile, Cys and
Phe).

Table 4
Results of the EDM–DEDM procedure.

The first MPE value corresponds to the best electron-density map available
after the application of the standard EDM procedure [i.e. it is the mean phase
error (in degrees) of the phases ’p with respect to the published values ’]. The
second and the third MPE values correspond to the mean phase error of the
phases ’0 with respect to the published ’ values, after the first and the second
application of the DEDM cycles, respectively. CORR are the correlation
factors between the electron-density map calculated by using measured
moduli and phases ’p (for the first value) and ’0 (for the second and third
values), and the map calculated via measured moduli and published phases ’.

PDB MPE CORR

enhexa 22! 21! 21 0.92! 0.93! 0.94
1kf3 26! 25! 24 0.96! 0.96! 0.96
6rhn 32! 31! 31 0.91! 0.92! 0.92
1zs0 42! 40! 36 0.86! 0.89! 0.90
3ebx 45! 42! 40 0.84! 0.88! 0.89
1na7 48! 47! 47 0.78! 0.78! 0.79
1a6m 48! 44! 38 0.82! 0.86! 0.89
1e3u 51! 47! 40 0.77! 0.81! 0.85
2sar 53! 52! 50 0.72! 0.73! 0.75
1pm2 56! 53! 49 0.70! 0.73! 0.76
1i9a 58! 57! 56 0.68! 0.71! 0.72
1kqw 60! 59! 56 0.69! 0.70! 0.73
1lys 64! 63! 61 0.65! 0.66! 0.67
6ebx 72! 71! 70 0.49! 0.51! 0.49
2iff 72! 72! 72 0.38! 0.38! 0.36
1cgn 73! 73! 73 0.51! 0.53! 0.53
1bxo 74! 74! 70 0.58! 0.59! 0.63



variance �q of the expected value of Fq. In particular, it has

been established that the case with jFj large and jFpj small is

quite different from the case with jFj small and jFpj large, even

if the value of jFqj = jjmjFj �DjFpjj is the same. In addition, it

has been shown that the phases ’q of the reflections with large

�q values cannot be accurately estimated, while their ’p values

are reliable estimates of the phase ’. Vice versa, reflections

with small �q values provide reliable estimates of the phase ’q,

while their ’p phases are rough approximations of the ’
values. The above results suggested to us a procedure

(DEDM) aimed at improving the ’q estimates provided by the

conventional (Fo � Fc) Fourier synthesis by recursive cycles

based on a difference electron-density modification technique.

The method levers on the phases of the reflections with small

�q values to improve the ’q estimates with larger �q values.

The DEDM procedure has to face additional difficulties

with respect to those tackled by EDM techniques; indeed, the

coefficients of the Fo Fourier syntheses are observed quan-

tities, while a DEDM procedure is obliged to use estimated

values. Nevertheless, the proposed DEDM procedure

succeeded in yielding better modulus and phase estimates

when applied to cases routinely encountered in crystal-

lography, in particular, in the refinement of molecular

replacement models or of structural fragments built by auto-

matic procedures from experimental electron-density maps.

The expected complementarity between EDM and DEDM

procedures suggested to us a next goal: the integration of the

DEDM procedure with additional cycles of EDM. The results

were very encouraging.

The procedure was applied to various cases, including

proteins constituted by two monomers, one of which is

correctly placed by molecular replacement. The quality of the

final electron-density maps significantly improved, so allowing

us to recover parts of the target structure not covered by the

partial structure. The procedure seems to have a reserve of

power and may be considered a first step for further devel-

opments.

The application of DEDM to macromolecular crystal-

lography opens the question of how to handle the free R

reflections. While they may be used during the EDM cycles

that precede or follow DEDM, their application is doubtful

within the DEDM cycles; indeed, no modulus constraint is

used for calculating the difference Fourier map (contrary to

what happens for the observed electron-density maps). As a

consequence, in our tests the free R criterion is not well

correlated with the variables MPE or CORR. Its use within

DEDM cycles requires substantial modifications and a

supplementary study.

APPENDIX A
Modulus estimation and phase estimation constraints in
the DEDM procedure

Let us assume that mjFj, DjFpj and ’p are known and that an

estimate h’qi of ’q is available after application of some

DEDM cycles. Then hjFqji may be calculated via the Carnot

theorem (see the triangles sketched in Fig. 8):

hjFqji ¼ �DjFpj cosð�Þ 	 m2jFj2 �D2jFpj
2 sin2
ð�Þ

� �1=2
;

ð13Þ

where � ¼ j’p � h’qij, provided

sin2
ð�Þ � m2jFj2=D2jFpj

2: ð14Þ

If mjFj 
 DjFpj, condition (14) is always verified and one of

the two roots in equation (13) is always negative; then the

unique acceptable solution is

hjFqji ¼ �DjFpj cosð�Þ þ m2
jFj2 �D2

jFpj
2 sin2
ð�Þ

� �1=2
;

ð15Þ

with no limitation on �. The geometrical interpretation of this

case is sketched in Fig. 8(a). A circumference of radius mjFj is

drawn; since the orientation of F is not known, the triangle can

be closed for any value of �.

Conversely, if mjFj<DjFpj, condition (14) is verified for a

limited range of � values [i.e. in Fig. 8(b) the triangle may be

closed only if the vector hFqi intersects the circle]. In this case
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Figure 8
Schematic view of the vector equation mF ¼ DFp þ hFqi when (a) m|F | is
larger than D|Fp| and (b) m|F | is smaller than D|Fp|.

Figure 7
1e3u: electron-density maps calculated for the partial structure (blue) and
after the application of the EDM–DEDM procedure (red), superimposed
on the structural fragment corresponding to residues 205 (Lys) and 206
(Thr) of chain A.



both the roots in equation (13) are positive; choosing the

lower root is a way to minimize the error on hjFqji.

Suppose now that mjFj<DjFpj, but condition (14) is not

satisfied; then h’qi is probably wrong. This constraint is used in

step 4 to correct the phase values obtained after each cycle.

Intuitively, one would assign the new h’qi value so that the

tangent condition

sinð�Þ ¼ mjFj=DjFpj ð16Þ

is verified, but in practice our tests lead to better results if the

initial value h’qi ¼ ’p þ � is restored. This indicates that in

this case the side on which hFqi is located with respect to Fp,

suggested by the cycles, is also wrong.

In step 2 condition (16) is used to bound the phase esti-

mation. If mjFj>DjFpj, (16) may be rewritten as

jh’qi � ð’p þ �ÞjMAX ¼ arcsin
�
mjFj=DjFpj

�
; ð17Þ

which gives the limiting values of h’qi given its initial value

ð’p þ �Þ.
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